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Abstract Depth concentration profiles of 26 elements, i.e. trace elements (As, Ba, Cd, Co, Cr, Cu,
Hg, Ni, Pb, Rb, Sr, V and Zn), lithophiles (Si, Al, Fe, Mn, Na, K, Mg, Ca and Ti) and nutrients (C, P,
N, S) have been established in a sediment core collected at the Respomuso Lake (Pyrenees, Spain).
This high altitude lake of glacier origin was transformed into reservoir in the fifties of last century.
Correlations among the depth profiles of the above elements were established. HCl-extractable
elements, which are better related to bioavailability, followed the profiles of total contents. Principal
component analysis was applied to establish the binding behaviour of trace elements in the sediment
matrix and, in turn, to search for their anthropogenic or natural sources. It was seen that Cu, Ni, Pb,
Sr and Zn clustered together, and with exception of Sr, they were not clearly associated with any
major component of the sediment. Their depth profiles correlate well with each other, hence
indicating their presence as a result of atmospheric pollution. Redox-sensitive elements such as Fe
and Mn follow a similar trend along the vertical profile. Depth profiles of As an Co correlate well with
those of Fe and Mn. Principal component analysis showed that As, Co, Fe and Mn clustered
together, which confirms the close association of As and Co with Fe-Mn oxyhydroxides. As
concentrations in many strata exceed the ERM value, and therefore, significant biological effects are
expected. Dissolution of minerals such as pyrite, chalcopyrite and galena taking part in the
mineralogy of this area accounts for the As concentration found. Ba, Cr, Rb and V were associated
with the sediment matrix (aluminosilicates), hence showing low mobility.
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Abstract. Depth concentration profiles of 26 elements, i.e. trace elements (As, Ba, Cd, Co, Cr, Cu, Hg,
Ni, Pb, Rb, Sr, V and Zn), lithophiles (Si, Al, Fe, Mn, Na, K, Mg, Ca and Ti) and nutrients (C, P, N, S)
have been established in a sediment core collected at the Respomuso Lake (Pyrenees, Spain). This high
altitude lake of glacier origin was transformed into reservoir in the fifties of last century. Correlations
among the depth profiles of the above elements were established. HCl-extractable elements, which are
better related to bioavailability, followed the profiles of total contents. Principal component analysis
was applied to establish the binding behaviour of trace elements in the sediment matrix and, in turn,
to search for their anthropogenic or natural sources. It was seen that Cu, Ni, Pb, Sr and Zn clustered
together, and with exception of Sr, they were not clearly associated with any major component of
the sediment. Their depth profiles correlate well with each other, hence indicating their presence
as a result of atmospheric pollution. Redox-sensitive elements such as Fe and Mn follow a similar
trend along the vertical profile. Depth profiles of As an Co correlate well with those of Fe and Mn.
Principal component analysis showed that As, Co, Fe and Mn clustered together, which confirms the
close association of As and Co with Fe-Mn oxyhydroxides. As concentrations in many strata exceed
the ERM value, and therefore, significant biological effects are expected. Dissolution of minerals
such as pyrite, chalcopyrite and galena taking part in the mineralogy of this area accounts for the As
concentration found. Ba, Cr, Rb and V were associated with the sediment matrix (aluminosilicates),
hence showing low mobility.

Keywords: trace elements, sediments, depth profile, Respomuso Lake, extractable contents, principal
component analysis

1. Introduction

Despite Lakes containing less than 0.02% of the water in the hydrosphere, their
geological significance is much greater than this value suggests (Talbot, 1996).
Lakes used as reservoirs, besides their environmental relevance they have become
important sources of water and energy. In this context, Respomuso is a lake of
glacier origin situated at the central Pyrenees (Spain) that was transformed into
reservoir in the fifties.
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Pyrenean Glaciers were declared nature monuments in 1989 (BOE, 1989), being
subjected to protection since then. In an attempt to limit the ecological impact
over glaciers and their peripheral protection zones, regulations have established
limitations concerning waste spoils, building activities, and even flying over the
area (with exception of emergency situations, scientific missions and provision of
mountain refuges). However, it has been shown that enlargement of lakes addressed
to their transformation in reservoirs can give rise to significant impact on these
ecosystems (Prats, 1998).

Although several studies have been performed on pollution assessment in Pyre-
nees lakes, mainly in the framework of European projects, such as the Mountain
Lake Research (MOLAR) 1999 (Mosello et al., 2002), they have mostly focused on
the Red6 Lake, one among the few lakes that has not been altered for its conversion
into reservoir. Principally, environmental control in the Redé Lake has targeted ra-
dionuclides, organochlorine compounds, polycyclic aromatic hydrocarbon and lead
in the different environmental compartments (Camarero et al., 1998; Carrera et al.,
2002; Appleby et al., 2002; Grimalt et al., 2004). Despite heavy metals being ubiq-
uitous and persistent pollutants, information on their presence in Pyrenees Lakes
is scarce. Some reports have pointed out enrichment factors (EF) up to 5 in sev-
eral Pyrenean Lakes, thereby revealing the deposition of atmospheric pollutants in
mountain areas (Camarero, 2003). Lake sediments act as a major sink for metals and
hence, differentiation between natural metal enrichment in zones of mineralizations
and anthropogenic effects is especially well suited by sediment cores. Sediment core
analysis provides a historical record of the natural background and the man induced
accumulation of metals (Ahumada and Rudolph, 2004). In remote sites, such as high
altitude lakes, pollution originates principally from atmospheric deposition (Yang
etal.,2002). Variations in metal concentrations along the vertical profile should also
take into account geogenic processes occurring in the own lake. Therefore, metal
fluxes can be influenced by a large number of factors (Boyle and Birks, 1999).

The aim of this work is to investigate the variation in metal concentration
throughout the vertical profile of Respomuso Lake deposits since the time it was
transformed into reservoir. Distribution of trace metals in different geochemical
phases of the sediment core is discussed bearing in mind their geogenic or an-
thropogenic sources. Potential biological risk displayed by the trace metals in the
deposit is outlined on the basis of the sediment quality guidelines (USEPA).

2. Materials and Methods
2.1. DESCRIPTION OF THE STUDY AREA
The Respomuso Lake of glacial origin is located at the central-axis of Pyre-

nees (Tena Valley, Sallent de Gallego, Spain) and it has an altitude of 2121 m
(coordinates: 428490 N, 08170 W, about 2200 m above sea level), being among the
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Figure 1. Map showing the study area.

highest lakes at this mountain chain. The map showing the location of the Respo-
muso Lake is depicted in Figure 1. The lake is surrounded by the following peaks:
Forqueta (2743 m), Tebarrai (2916 m), Campoplano (2727 m), Balaitts (3151 m)
and Arriel (2824 m). The lake is only accessible on foot (2.5 h from the nearest road)
or by helicopter. Close to the lake there is the Respomuso refuge, which has been
open from ca. 1993. Its building was started in 1980, lifting the required materials
by helicopter, which flew over the lake for several times a day. This information is
relevant, since activities carried out during the building period can be considered
as potential sources of pollution.

The granitic massif is shaped by precambric and Palaeozoic materials that crop
out in this region of Pyrenees. Mineralogy is mainly formed by pyrite, chalcopyrite,
galena, siderite, green fluorite and white fluorite. Generally, pyrite, chalcopyrite and
galena contain large amounts of As. Tebarrai occurrences are remarkable within the
mineralization of this area. Tebarrai occurrences are low-temperature hydrothermal
veins related to sedimentary rocks in the Hercynian basement, which can be con-
sidered as polymetallic deposits with abundant fluorite. Zn-F-(Pb) mineralizations
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have been prospected, although apparently none has been mined (Subias et al.,
1997).

Hydroelectric use of the Respomuso Lake was started in 1954. Its artificial bar-
rage meant a noticeable increase of the basin area, ca. 20%. The capacity of the
reservoir is about 17.3 Hm?® and the total area 55.2 Ha (IAEST, 2002). Average
rainfalls are in the range 1800-2000 mm year~'. Water composition corresponds
to weak mineralization that is common in the whole Pyrenees area; pH ranges
from 6.4 to 7.9. Trace element concentrations are quite low or undetectable with
exception of As, which displays significantly high concentrations (13-26 pg/L)
in some spring waters of the Tena valley, generally fountains situated at an alti-
tude between 1300 and 3200 m (Subias and Fernandez Nieto, 1995). International
organizations such as the world health organisation (WHO) and the US environ-
mental protection agency (USEPA) have given limits for As in drinking water.
Until 2001, most International legislations recommended 50 ppb of Arsenic as
a standard for drinking water. In 2001, EPA adopted a new standard at 10 ppb,
replacing the old standard and its full applicability will start on January 2006.
(http://www.epa.gov/safewater/ars/implement.html). This anomalous As concen-
tration in the spring waters of this region has been attributed to dissolution processes
of pyrite, chalcopyrite and skarn deposits (i.e. deposits occurring at the contact of
granites with limestones) (Subias and Ferndndez Nieto, 1995; Garrido et al., 2001).
Arsenic contribution to natural water composition as a consequence of geochemical
processes is well documented and, unlike anthropogenic sources, resulting pollution
can spread over large areas (Chakraborti et al., 2001; Rahman et al., 2005).

2.2. SAMPLING

A 63 cm sediment core was collected at a side of the lake during the summer of 2002,
which had been emptied with the aim of assessing the effect of a weak earthquake
occurring in that period. The depth of the core selected was expected to comprise
a record from the time when the Respomuso Lake was transformed into reservoir.
Samples were at the centre of the Respomuso reservoir, which corresponds to the
edge of the old glacier basin. Boulders found at the bottom gives exactly the depth
from which the new deposit was formed. As a preliminary study, in sifu inspection of
the depth profile allowed to directly observe sediment stratification from the top up
to the boulders of the old basin. Strata showed a continuous record of sedimentation
and no textural evidence of erosion. An interpretable chronology was visible, so the
whole core included the history of the last 42 years. Several studies (Allen, 1986;
Renberg, 1986, Santschi et al., 1984; Mecray, 2001) have documented that, in the ab-
sence of significant changes in sediment texture, downcore variations in trace metal
concentrations and accumulation rates reflect historical variations in metal inputs.

The core was sub-sampled at 1.5 cm intervals. Sub-samples were placed into PET
bags and transported to the lab at4 °C. Sediments consisting of interlaminated sandy
and clayey silts were air-dried for 15 days inside a laminar flow-chamber to avoid
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contamination. Then, the dried samples were sieved through nylon sieves (50 um
meshsize), homogenised and stored in polyethylene vessels in a dry atmosphere.

2.3. ANALYTICAL METHODS

All reagents were of analytical grade. Ultrapure water from a Milli Q system
(Millipore, Molsheim, France) was used throughout.

Concentrations of As, Ba, Co, Cr, Cu, Sr, Rb, Zn and V was determined by induc-
tively coupled plasma-optical emission spectrometry (ICP-OES) (Perkin-Elmer,
model Optima 4300, Uberlingen, Germany); Concentrations of Cd and Pb were
determined by electrothermal-atomic absorption spectrometry (ETAAS) (Unicam,
model Solaar 939, Cambridge, UK); concentration of Hg was determined by cold
vapour-atomic absorption spectrometry (CV-AAS) (Perkin-Elmer, model FIMS
400). Sediment samples were firstly subjected to microwave-assisted digestion
(CEM, model MDS-2000, Matthews, USA) using Teflon PFA vessels and a multi-
stage programme based on the procedure established elsewhere (Filgueiras et al.,
2004). 5 mL of 65% mass/mass HNO3 and 2 mL of 48% mass/mass HF were em-
ployed. Acid digestion was validated against CRM GBW 07302 and CRM GBW
07311 stream sediments from the National Research Center of China.

Bioavailable element contents in the sediment samples were obtained upon ex-
traction with 1 M HCI according to the procedure recommended by the ASTM
D3974-81 Practice B (ASTM, 1990; Carral et al., 1995). This standard practice in-
dicates that the metals, which are released from the sediment upon acid extraction,
are bound as hydroxides, carbonates, sulphides, oxides and organic materials. The
use of lower HCI concentrations, despite being a common practice, may be ineffec-
tive since acidity can be neutralized by carbonates present in the sediment (Luoma
and Bryan, 1981; Snape et al., 2004). On the other hand, higher HCI concentrations
can lead to the attack of residual sediment phases. 1 M HCI corresponds well with
ecotoxicity data (Luoma and Bryan, 1981; Ying et al., 1992). Extractions were car-
ried outin 50 mL capacity polyethylene tubes using a 0.5 g sample mass and a 20 mL
extractant volume. After agitation for 2 h, the extract was separated by centrifugation
(2100 rpm, 20 min). Both digestions and extractions were carried out in triplicate.

Major components were characterised by X-ray fluorescence spectrometry
(XRF) (Siemens; model SRS 3000, Hannover, Germany). A portion of 5-6 g of
sediment was prepared as lithium tetraborate melts for the determination of major
components (SiO,, Al,O3, Fe;O3, MnO, TiO,, CaO, MgO, K,0, Na,0, P,0s, S
and Cl). Fusions were performed in Pt-Au crucibles. Calibration was carried out
using certified Reference materials from National Research council of Canada,
NRCC (SO-3, SO-4, HISS-1, MESS-3 and PACS-2, soils and sediments) and from
South Africa Bureau of Standards, SACCRM (SARM 52, stream sediment).

Carbon and nitrogen determinations were carried out by elemental analysis with
an automatic analyser (LECO, model CN2000, St. Joseph, USA). Calibration was
performed using LECO soil standards (502-309 Soil).
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Element recoveries of 93—105% obtained with certified reference materials
(CRMs) pointed out that analytical methods were adequate for all elements in
the samples of the Respomuso Lake. Found concentration values were in all cases
within the certified ranges. All concentration values reported in this work were
well above the corresponding quantification limits. Relative standard deviations
were below 10% for determination of trace elements.

Factor analysis (principal components analysis, PCA) was applied as a chemo-
metric approach to detect the latent information within the element concentration
data. PCA was performed for different subsets of data as described in the ‘results
and discussion’ section using the software StatView for Apple Macintosh.

3. Results and Discussion

3.1. DEPTH PROFILES OF MAJOR COMPONENTS IN THE RESPOMUSO
SEDIMENT CORE

Analytical results for major components of the sediments are shown in Table I.
Mineralogy of the Respomuso sediments is predominantly quartz, but also reflects
the lithological and hydrochemical influences. Typical endogenic an authigenic
formations such as Fe-Mn oxides, Ca-Mg minerals or phosphorus compounds and
sulphides display a large variability as pointed out by the coefficients of variation
(CV). The correlation coefficients (CC) of Pearson (p < 0.05) for the major el-
ements point out that lithophiles (i.e. alkaline, alkaline-earth and aluminium) are
generally well correlated. Al, the safest indicator of erosion, remains almost con-
stant along the sediment core profile (CV: 4.4%), which means that a uniform
sedimentation rate has occurred. Other erosion indicators such as K and Mg dis-
play also minimal variations. This confirms the similar physical characteristics
observed for the segments of the sediment core. Ca has been included in this work
within lithophiles. Nevertheless, this element can be included in different groups
in aquatic systems. Thus, it has been included in the alkaline type elements that are
precipitated by increased pH (Cd, Mg, Sr, Mn, Fe, Cu, Zn and Pb) and within the

TABLE I

Major components in subsamples from the Respomuso sediment core (% mass/mass)

Organic
SiO, Al,O; Fe,O; MnO Na,O K,0 MgO CaO TiO, C total matter P,0s N S

Mean 539 17.6 65 022 10 28 20 2809 28 2.7 04 023 0.09
Min. 51.6 161 55 013 08 23 1.7 2008 05 0.4 0.2 0.06 0.01
Max. 583 192 92 057 14 32 24 4410 86 8.5 0.5 058 0.16

CvV 20 44 127 454 126 6.7 86 188 7.5 609 612 18 48.6 44
(%)
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sulphate-carbonate type (Ba, Sr, Ca) that are precipitated by increased sulphate or
carbonate (Salomons and Forstner, 1984). The Ca geochemistry is strongly influ-
enced by the CO,-HCO3 -Co§* system, which is different for the other lithophiles
(Talbot, 1996).

Additionally, Ca shows the largest CV among this group of elements (CV: 18%).
Fe and Mn, two redox-sensitive metals, are significantly correlated with each other
along the sediment core. A larger CV is observed for Mn (45%) than for Fe (13%).
Mn concentration peaks at a depth between 15 and 31.5 cm. Mn and Fe enrichments
have been reported under conditions of diagenetic metal remobilisation (Hornberger
etal., 1999). The Fe/Mnratio has been commonly employed as a variable to describe
sediment redox conditions and, in turn, to reveal changes in the sedimentation
environment (Vaalgamaa, 2004). A significant increase in the Fe and Mn contents
in the sediment core was observed at a depth between 15 and 24 cm (Figure 2). It
is reasonable to ascribe the observed change to the formation and precipitation of
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Fe and Mn oxyhydroxides. In lake waters, a redissolution of iron and manganese
takes place, which diffuses upward and precipitates at the oxic/anoxic interface in
the lake. The resulting hydrous iron and manganese particles are able to remove
dissolved metals (Salomons and Forstner, 1984). Similar depth profiles for Fe and
Mn to those observed in this work have been reported elsewhere (Chandrajith
et al., 1995). This profile for Mn is classified as case III (Salomons and Forstner,
1984) that corresponds to mildly reducing conditions allowing the development
of well defined oxic zone where remobilised metals may be trapped and greatly
concentrated over natural levels. According to this, there is an increase in Mn and
Fe contents at the top layer of these sediments as occurs in the Respomuso core.
The concretions and nodules of Fe/Mn oxyhydrates are autochthonous phases, for
which diagenetic effects are assumed to occur in Lakes. Apart from Fe and Mn,
redox processes involve the elements C, N, O, S and H. No significant correlation
between Fe/Mn and those elements was found. An explanation for the maximum
observed in the core above 15 cm depth could be based on the relationship between
organic matter and Fe(III) precipitation in the sediments. Dissolved organic matter
can significantly alter the distribution between oxidised and reduced forms of Fe
and Mn (i.e. Fe (II) stabilization is a function of the concentration of organic matter).
A diminished organic matter content can facilitate oxidation of Fe(Il) into Fe(III),
and precipitation of the latter in the sediments. This hypothesis is supported by the
minimum in the C/N ratio that is observed at ca. 15 cm depth.

Elements belonging to the nutrient group (C, P, N, S) are also correlated with
each other in the sediment core. A large variability is observed for this element
group along the depth profile (CV 40-60%) except for P (CV 18%). Sediments
collected at a depth between 30 and 57 cm showed a significant increase in nutrient
element concentrations. The C/N ratio has been employed to establish the origin
of organic matter in sediments (Meyers, 1994). A ratio between 5 and 8 suggests
that the organic matter was originated in the own lake. On the other hand, a C/N
ratio above the upper limit does not mean an external source of organic matter since
N-containing compounds can be lost (Vaalgamaa, 2004). A C/N ratio between 25
and 35 is associated with land-derived organic matters. In the sediment core of the
Respomuso Lake, the C/N ratio ranges from 7 to 14 (mean value: 11) (Figure 3),
hence suggesting that organic matter is perhaps originated in the own lake. Inorganic
C contents are quite low, in the range 0.02-0.05%, so total C corresponds almost
exclusively to organic C. Cl concentrations were around 0.14% in the sediment
core.

3.2. DEPTH PROFILES OF TOTAL TRACE ELEMENTS

Total concentrations (ug/g) of trace elements along the depth profile are shown in
Table II. Mean, minimum and maximum values for each metal were: As (mean
87.3, min. 15.3, max. 339.5); Ba (mean 423, min. 387, max. 456); Cd (mean 0.83,
min. <LD); Co (mean 20, min. 15.9, max. 42); Cr (mean 84.4, min. 74.72, max.
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Figure 3. Depth profile of the C/N ratio.

95.5); Cu (mean 42.47, min. 10.50, max. 77.52); Hg (mean 0.039, min. <D, max.
0.067); Ni (mean 38.6, min. 28.2, max. 49.3); Pb (mean 33.1, min. 12.4, max. 54.0);
Rb (mean 107.8, min. 87.9, max. 114.5); Sr (mean 141.0, min. 122.9, max. 181.5);
V (mean 127.5, min. 109.3, max. 144.0); Zn (mean 117.3, min. 67.9, max. 188.1).
Depth profiles of As, Ni, Cu, Zn, Pb, Fe, Mn, Co, Cd and Hg are displayed in
Figure 2.

The coefficients of variation (CV) corresponding to total element concentrations
along the depth profile were: As (80%); Ba (3.3%); Cd (118%); Co (24%); Cr (6%);
Cu (34%); Hg (40%); Ni (13%); Pb (28%); Rb (4.7%); Sr (10%); V (7.7%); Zn
21%).

Ba, Cr, Rb and V display CVs less than 10% so they can be considered as
conservative in respect to geochemistry of the Respomuso Lake, and therefore,
of natural origin. The remaining elements display a significant variability in their
depth concentration profiles. No correlation between metal concentration and depth
is found in the sediment core. Depth profiles of Ni, Cu, Zn and Pb are well correlated
among them (CC: 0.8), which may suggest acommon origin. These metals, specially
Cu and Zn, are commonly used as indicators for anthropogenic influence, and in
general, it has been reported that their profiles correlate with the loading history
(Vaalgamaa, 2004). The importance of atmospheric input of trace metals in lakes
is clear (Salomons and Forstner, 1984). Atmospheric loading of trace metals in
lakes is especially important for Pb and it is also a significant source of Zn, Cu, Cd
and Mn. The correlation between total Pb and extracted Pb found in our study is
very high, hence demonstrating its anthropogenic origin. A noticeable increase in
Pb concentration occurs in sediment collected at the upper core corresponding to
recent years, despite many studies in Europe showing a decline (Camarero et al.,
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1998; Yang et al., 2002). The reason for the increase in Pb content in the upper
section of the core is unclear.

The depth concentration profile of Sr is well correlated with those of Zn and
Pb, and to a lesser extent, with those of the other elements. Variability of Sr con-
centration along the sediment core is lesser than for the above elements (CV 10.2
%). Mean Sr concentration in fluorite deposits of Tebarrai, close to Respomuso,
is about 162 pg/g (Subias et al., 1988), being in good agreement with the mean
Sr concentration found in our study. Sr belongs to the sulphate-carbonate type and
also to the alkaline type elements. In the latter group, Sr is accompanied by Ca,
Mg, Mn, Fe, Cu, Zn, Pb and Cd (Salomons and Forstner, 1984). This may relate Sr
to Pb and Zn.

The depth profile of Co is very homogeneous. Only the high concentration at a
15 cm depth corresponding to the stratum of 1992 stands out. The depth profile of
Co is well correlated with that of Mn (CC: 0.86), which also peaks at that depth.
This behaviour could be related to a change in the redox conditions occurring
in the lake. Thus, when Mn oxidation takes place, many trace elements can be
removed from the water as a result of adsorption onto freshly formed surface of Mn
oxyhydroxides. Adsorption ability of different elements onto Mn oxyhydroxides
increases in the order: Mg < Ca < Sr < Ba < Ni < Zn < Mn < Co (Murray, 1975).
The depth profile of As is characterised by a large variability (CV 80%). For As,
its variability along the core can be successfully explained through its association
with Fe-Mn oxyhydroxides. The occurrence of As-rich pyrites in the area together
with the affinity of Fe oxides toward As(V) may account for this association. At
a depth between 7.5 and 30 cm, an increase in the As concentration is clearly
observed. As concentration peaks at 7.5, 22.5 and 30 cm. The depth profile of Cd
is correlated neither with that of Fe and Mn nor with those of nutrient elements and
major components. Cd concentrations appear to have the largest variability along
the sediment core (CV 118%). The depth profile of Hg significantly correlates with
nutrients (CC < 0.65). The correlation between depth and Hg concentration has
been found as a result of enhanced sorption of Hg by plant debris originated from
plant decomposition (Yang et al., 2002).

3.3. PRINCIPAL COMPONENT ANALYSIS

By applying principal component analysis (PCA) to the matrix of 26 features (total
concentration of trace element, MnO, Fe,Os, C, N, P, S, Al,O3, TiO,, Na,0, K0,
Si0,, MgO and CaO) and 42 sub-samples of the sediment core, 5 factors (F1-F5)
were extracted. The first two factors accounted for 64% of the total variance (33 and
31%, respectively). The third, fourth and fifth factors only described 9, 7 and 4% of
the total variance. A factor loading was considered significant when it was higher
than 0.6. Major elements, i.e. P, S, C y N display very high loadings in the first
component (0.9). Fe y Mn load F2 and F3, being closer to F3 with orthogonal or
oblique rotation (Varimax) (loadings of 0.7 and 0.9, respectively). The rest of major



DEPTH PROFILE OF TRACE ELEMENTS IN A SEDIMENT CORE OF A HIGH-ALTITUDE LAKE 285

Vi
Bar CriHg« _ Sr
ca Ni=_Pb
. «Rb = Cu =gy Redox-sensitive
metals
_MnOF o (@)
Co " F€0U;
1 0As
1
a s Sl
» Co» Cd g “Ni
S o . s - Nutrients
5] P 7 C
3 Cra.. S|N (b)
Ba V
Rb= =
_} i
ALO OV g, NI
Ba* *MgO Pb-’_ 7n
o LoaRD *Cd  Sm Lithophiles
Nen© c ©
. "Sio, i "9 = ¢
K0 2 As Ca0
-1
-1 0 1
Factor 1

Figure 4. Loading plots of trace metal binding fractions: (a) trace metals and redoxsensitive metals;
(b) Trace metals and nutrients; (c) trace metals and lithophiles.

elements (Na, Mg, Al, Si, K, Ca y Ti) called lithophiles because they are major
constituents of common silicates (Vaalgama, 2004) load factors 2 and 4 (with and
without matrix rotation). Trace element loadings are distributed among different
components, mainly F1 and F2.

Three separate PCAs were performed on the following subsets of data for a
better interpretation: trace elements and redox sensitive elements, trace elements
and nutrients and trace elements and lithophiles. Figure 4 shows the loading plots of
factor 1 (F1) vs. factor 2 (F2) when PCA is applied to trace elements together with:
i) Fe-Mn (redox sensitive elements); ii) nutrients; iii) lithophile elements including
Si and Ti. For the first PCA, F1 describes 35% of the common variance, Factor 2
describes 27% and each one of the remaining factors account for less than 10% of
the total variance. For the second PCA, Factor 1 describes 41%, factor 2 describes
26% and each one of the remaining factos describe less than 8% of the total variance.
For the third PCA, Factor 1 describes 38%, factor 2 describes 27% and each one of
the remaining factors account for less than 10% of the total variance.

As can be noted in Figure 4 (a), As, Co, Mn and Fe cluster together, thereby
confirming that As and Co are preferably bound to Fe-Mn oxyhydroxides. Ad-
sorption/coprecipitation processes are responsible for their presence in the oxides.
This means that the binding behaviour of As and Co with Fe-Mn oxyhydroxides
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is more dependent of the sensitive redox elements than the other trace elements.
Therefore, As and Co concentration in the sediment core increases with increasing
concentration of Fe and Mn, which explains the above correlation found among
their depth profiles. This type of preferential affinity of trace elements to a particular
mineralogical phase has also been revealed for other elements (e.g. Pb, Cu with
organic matter) using PCA (Filgueiras et al., 2004). Likewise, Cu, Ni, Sr, Pb and
Zn cluster together but their data point in the loading plot are far from the cluster
formed by As, Co, Mn and Fe meaning a different binding behaviour and likely, a
different origin in the lake. The loading plot for trace elements and nutrients shows
an identical cluster for Cu, Ni, Sr, Pb and Zn as above (Figure 4 (b)). However, with
the exception of Hg, no clear association of trace elements with nutrients (C, N, S,
P) is seen. This could be explained through the high affinity of plant debris for Hg
(Yang et al., 2002). Figure 4 (c) shows that the data points of V and Cr are close to
that of TiO, and MgO. Likewise, elements such as Rb and Ba seem to be related
to some matrix components such as NaO, and Al,O3, hence being geogenic.

3.4. ASSESSMENT OF ELEMENT MOBILITY

Extractable element concentrations along the depth profile are shown in Table III.
Depth concentration profiles of extractable As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr,
V and Zn in the Respomuso sediment core are shown in Figure 5. Mean values for
each element were (ug/g dry weight): As, 39.4; Ba, 15.3; Co, 3.7; Cr, 1.2; Cu, 22.9;
Fe, 2044; Mn, 160; Ni, 4.1; Pb, 22; Sr, 5.8; V, 4.8; Zn, 12.6.

Percentages of metal extracted throughout the vertical profile are related to their
ability to mobilize. Extraction percentages fall within the following ranges for the
elements studied: As (23-91%); Ba (1.9-7.6%); Co (12-29%); Cr (1.1-2.4%); Cu
(37-68%); Fe (1.4—-13%); Mn (3.4-18%); Ni (5-19%); Pb (52-74%); St (3.1-6%);
V (1.6-5.8%); Zn (7.1-16%). According to these values, mobility of the different
elements decreases in the following order: Pb > As ~ Cu > Co > Zn ~ Ni > Fe &
Sr~Mn =~ V = Ba > Cr. The low mobility of Ba, Cr and V confirms its association
with the major components of the sediment (i.e. aluminosilicates), which remain
insoluble after extraction with 1M HCI. Correlation between extractable and total
content along the depth profile of the sediment core is particularly high for Mn and
Fe (e.g. Mn, CC: 0.96). This correlation has also been observed for marine sediments
(Tanner and Leong, 2000). Extractable contents of Mn and Fe also correlate well
with each other. Extractable As correlates well with total As (CC: 0.91) and also
with extractable Fe (CC: 0.80), thereby confirming its association with Fe-Mn
oxyhydroxides. For other elements, significant correlation between extractable and
total contents along the vertical profile is also seen for Cu (CC: 0.92), Pb (CC: 0.97),
Zn (0.80), Co (CC: 0.71), Ni (CC: 0.60). It is remarkable to observe the correlation
existing between extractable Ni and Zn contents with depth, which is in agreement
with increased anthropogenic inputs in recent years.
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Figure 5. Depth profiles for extractable element concentrations.

3.5. TRACE ELEMENTS AND BIOLOGICAL EFFECTS

A preliminary assessment of biological effects relative to the total metal concen-
trations found can be made on the basis of the sediment quality guidelines (SQGs)
for the National Status and Trends (NS&T) Program (www.epa.gov/waterscience/
cs/guidelines.htm).

The SQGs were not promulgated as regulatory criteria or standards; they were
not intended as cleanup or remediation targets. Based on chemical and biological
effect measures, two values were derived for each substance: the “Effects Range-
Low” (ERL) and the “Effects Range-Median” (ERM).

The ERL was the 10th percentile and meant the concentration below which
adverse effects rarely occur. The ERM was the 50th percentile and meant the
concentration above which effects frequently occur.

When concentrations exceeded ERL values but were lower than the ERM val-
ues, the incidence of effects increased to 20-30% for most trace metals (As, Cd,
Cr, Cu, Pb, and Zn). For the above elements, when concentrations exceeded the
ERM values, the incidence of adverse effects increased to 60-90%. However, the
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incidence of ERMs for Ni and Hg were much lower (17 and 42% respectively)
(Sediment Quality Guidelines, 1999).

In the case of As, for which the ERL and ERM values are fixed at 8.2 and 70 ng/g,
respectively, the first value is exceeded throughout the vertical profile, while the
second one is even exceeded in many segments of the vertical profile. This finding
brings about at least an 11.1% of incidence effects and up to a 63% in cases where
the ERM is exceeded, which highlights the potential environmental risk associated
with these sediments. As contents beyond the ERM value were located between
6 and 31.5 cm from the upper sediment core. High As concentrations measured
in sediment core samples of Respomuso Lake are due to geogenic rather than
anthropogenic inputs, as demonstrated above. For the remaining metals included
in the SQG (Cd, Cr, Cu, Pb, Zn, Ni y Hg), the ERM values are never exceeded,
meaning a low environmental risk. For Hg, concentration values are below the
corresponding ERL value. On the contrary, Ni concentrations are above the ERL
value throughout the vertical profile, although this fact is only associated with a
16.7% of possible biological effects. Cd, Cr, Cu, Pb and Zn display concentrations
exceeding the ERL value in many segments of the sediment core.

It seems that the high As concentrations found at some strata could have rep-
resented an environmental problem in the area under study. Waters contaminated
by As as a result of mobility from As-rich sediments are well documented in areas
such as Bangladesh, Nepal, China, Hungary, India, Argentina, Mexico, Rumania,
Taiwan and USA. However, the occurrence of As-enriched sediments is not suf-
ficient itself to cause water contamination. Factors such as dilution, contact time
between the water and the soil/sediment and the occurrence of reducing conditions
in ground water are also relevant factors. Moreover, water can suffer from As con-
tamination in regions related to hydrothermal processes and mineral deposits. Both
phenomena have been described in locations of central-axis of Pyrenees such as
Tebarrai or Panticosa, nearby to Respomuso Lake (Garrido et al., 2001).

In general, As mobility is explained on the basis of the redox conditions and
pH occurring in the aquatic medium. A well-established mobilisation mechanism
for As assumes the oxidation of As-rich pyrite to scorodite (FeAsO4.2H,0), the
decomposition of scorodite into a Fe-hydroxide or oxide and the desorption/release
from Fe(III) hydroxides. This mechanism has been mostly employed to explain As
mobility in Bangladesh or Italy (Chakraborti et al., 2001; Frau and Ardau, 2004),
and given the geochemical characteristics at Pyrenees, it could also be applied to
this case study.

According to the As extractable contents, mobility of As throughout the sedi-
ment core displayed a large variability. In the Respomuso sediment core, depth is
neither correlated with total As (CC —0.50) nor with extractable As (CC —0.38),
but a significant positive correlation exists between depth and percentage of ex-
tracted As (CC 0.76). A possible explanation for this finding could be the enhanced
reduction of As(V) into As(IIl) in the deep strata of the sediment core under anoxic
conditions. As(III) species are weakly bound to sediment particles because As(III)
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is predominantly H3AsO{ at environmental pH values and has a first pK, of 9.2
(Kinniburg and Smedley, 2001). On the contrary, As(V) is present as anionic forms
(H,AsO, and HASOZ_), which strongly bind sediment surfaces.

4. Conclusions

In the Respomuso Lake, a remote site at the Pyrenees mountains, it is demonstrated
that anthropogenic metal inputs are derived from atmospheric deposition. Relation-
ships found between trace metal contents and matrix components of the sediment
allowed to establish the more likely explanations for variability in the depth profile
of the deposit. The high concentrations of As found throughout the depth profile
could make advisable further studies in the area including a close control of nearby
spring waters so that poisoning episodes can be prevented.
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